Neisseria meningitidis, pathogenetic mechanisms to overcome the human immune defences.
نویسندگان
چکیده
Neisseria meningitidis is hosted only by humans and colonizes the nasopharynx; it survives in the human body by reaching an equilibrium with its exclusive host. Indeed, while cases of invasive disease are rare, the number of asymptomatic Neisseria meningitides carriers is far higher. The aim of this paper is to summarize the current knowledge of survival strategies of Neisseria meningitides against the human immune defences. Neisseria meningitidis possesses a variety of adaptive characteristics which enable it to avoid being killed by the immune system, such as the capsule, the lipopolysaccharide, groups of proteins that block the action of the antimicrobial proteins (AMP), proteins that inhibit the complement system, and components that prevent both the maturation and the perfect functioning of phagocytes. The main means of adhesion of Neisseria meningitides to the host cells are Pili, constituted by several proteins of whom the most important is Pilin E. Opacity-associated proteins (Opa) and (Opc) are two proteins that make an important contribution to the process of adhesion to the cell. Porins A and B contribute to neisserial adhesion and penetration into the cells, and also inhibit the complement system. Factor H binding protein (fhbp) binds factor H, allowing the bacteria to survive in the blood. Neisserial adhesin A (NadA) is a minor adhesin that is expressed by 50% of the pathogenic strains. NadA is known to be involved in cell adhesion and invasion and in the induction of proinflammatory cytokines. Neisserial heparin binding antigen (NHBA) binds heparin, thus increasing the resistance of the bacterium in the serum.
منابع مشابه
Construction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate
Objective(s): The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model.Materials and Methods: Af...
متن کاملIn silico Analysis and Modeling of ACP-MIP–PilQ Chimeric Antigen from Neisseria meningitidis Serogroup B
Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein ...
متن کاملIn silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis
Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...
متن کاملDevelopment of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX
Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers...
متن کاملTruncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria meningitidis Serogroup B: Potent Inducer of the Murine Immune System
Background: A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants. The present study evaluated the immunogenicity of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of preventive medicine and hygiene
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2012